Friday, May 27, 2016

What the thrombocytopenia findings mean for Ionis Pharmaceuticals

Yesterday, Ionis Pharmaceuticals disclosed that severe reductions in platelets had been observed in phase III clinical trials of both IONS-TTRRx for the treatment of TTR amyloidosis and IONS-ApoCIIIRx for conditions related to highly elevated triglycerides.  Severe platelet reductions are dangerous since it can lead to occult, uncontrolled bleeding and poor blood clotting following injury.

Since the conference call was a PR disaster as the CEO of Ionis has major issues with speaking his scientific mind, and since competitor Alnylam has seemingly become the original source and interpreter of the Ionis thrombocytopenia issues (one wonders how they come into possession of these Ionis trade secrets...), I thought it may be useful to briefly come out of blogging hibernation and lay out my thoughts about what these events mean for the technology and the company.

Thrombocytopenia likely limited to systemically administered, unconjugated PS-oligos >200mg per injection

As a hematological abnormality that has historically been observed with phosphorothioate (a ‘sticky’ chemistry) oligonucleotides when given at high doses (>200mg/injection)  I’ve always considered it likely that such thrombocytopenia will be associated with measures of plasma exposure of the oligonucleotides.  Notable examples for thrombocytopenia with phosphorothioate oligos include the DMD exon skipper drisapersen by Biomarin/Prosensa (6mg per kg per week, i.e. around 300mg/week for 50kg boy) and telomerase inhibitor imetelstat by Geron (~10mg per kg per week, i.e. around 700mg/week for average adult).  Actually, isn’t it ironic, or maybe even curious that imetelstat is being developed for conditions where elevated thrombocytes is the problem (see related blog entry)???

Consistent with this notion, there was a study by Flierl et al. in 2015 that looked at the mechanism of platelet activation which may lead to platelet consumption and explain lowered thrombocyte counts.  Without going into the details of the mechanistic aspects of the study, the authors find a strong correlation with peak plasma exposure (c max) of the oligonucleotides and platelet activation.   

So why hasn’t Ionis seen severe cases of thrombocytopenia in the past (excluding use of PS-oligos in cancer patients which frequently suffer from potentially confounding bone marrow suppressions from other drugs)?  The most probable explanation is a) these events are quite rare events and b) that their experience with PS-ASOs at 300mg/week and above has been limited.  At 300mg and especially 400mg per week, safety has always looked a bit dicey such that the 300mg per week dose e.g. for TTRRx was only adopted after 200mg per week was not competitive with the knockdown results produced by ALN-TTR02 from Alnylam. 

Similarly, the initial studies with ApoCIIIRx did not include the 300mg per week dose and was adopted in favor of the very impressive triglyceride reductions seen at doses higher than 200mg.  Usually the dose escalation of the prototypical Ionis phase I studies involved 50, 100, 200, then 400mg per week with 400mg per week never being chosen for the phase II and/or pivotal studies.

What I find highly interesting is that the pharmacokinetics data from the healthy volunteer study of ApoCIIIRx reported by Graham and colleagues in 2013 (see only Table IV) reported a non-linear, 4.5x increase in cmax when doubling the dose from 200mg to 400mg per week.  This could mean that at doses of 200mg per week and higher, the risk of severe thrombocytopenia is dramatically elevated by going past the threshold where platelets become critically activated (à clotting cascade).  
If the cmax theory holds true, then the following should be the impact of the new findings on the Ionis platform.  The summary takes into account the clinical observations by Ionis that the platelet reductions are reversible upon stopping dosing and can be prevented and also treated by steroid use (just as ALN-TTR02 involves steroid use):

1)      Unconjugated, systemically administered antisense at 300mg per week and above (incl. phase III assets TTRRx and ApoCIIIRx): need for tight platelet monitoring.  May involve temporary halt of studies to amend protocols.  Commercially, need for tight platelet monitoring could be a problem for less severe diseases due to convenience and competitive issues.  

Note that for all the liver-targeted programs, backup GalNAc-conjugated versions are in development which should not suffer from thrombocytopenia (see below).  However, systemic programs targeting other tissues such as DMPKRx for myotonic dystrophy will have to be under continued scrutiny depending on the dose.

2)      Unconjugated, systemically administered antisense at 200mg and below per week and below: little impact.  Start collecting data more systematically to learn more about platelet interactions, otherwise no big impact.

3)      GalNAc-conjugated antisense: no impact. Essentially all the Ionis pipeline, including ApoCIIIRx, has been re-engineered for some time now to be GalNAc-conjugates.  This is because of their 10-100 fold increased potency over the unconjugated versions thus decreasing the doses to well below those expected to cause severe thrombocytopenia.  Even at the same doses, plasma exposures will be much reduced due to the rapid clearance into the hepatic compartment as demonstrated by Shemesh et al in one of the most recent publications by Ionis.  No thrombocytopenia events to my knowledge were seen with RG-101 (for HCV) by Ionis' 'satellite company' Regulus Therapeutics, where a up to 8 mg/kg of GalNAc-conjugated phosphorothioate oligonucleotide has been administered.

4)      CNS programs: no impact. Peak plasma exposures are insignificant for intathecally administered oligonucleotides as used in Ionis’ CNS franchise, a franchise which includes exciting drug candidates such as phase III asset nusinersen for the treatment of spinal muscular atrophy (SMA) and candidates for other severe neurodegenerative diseases.

In summary, the only programs which could be significantly impacted by the thrombocytopenia findings are the programs that target tissues outside the liver and which involve systemic administration.  The liver franchise remains intact especially with the new GalNAc versions although there could be some minor delays and increased competitive impact in those diseases that Alnylam is free to go after according to the Ionis-Alnylam IP agreements.  The important CNS franchise remains fully intact. 

Disclosure: long Ionis and doubled down yesterday.

No comments:

By Dirk Haussecker. All rights reserved.

Disclaimer: This blog is not intended for distribution to or use by any person or entity who is a citizen or resident of, or located in any locality, state, country or other jurisdiction where such distribution, publication, availability or use would be contrary to law or regulation or which would subject the author or any of his collaborators and contributors to any registration or licensing requirement within such jurisdiction. This blog expresses only my opinions, they may be flawed and are for entertainment purposes only. Opinions expressed are a direct result of information which may or may not be accurate, and I do not assume any responsibility for material errors or to provide updates should circumstances change. Opinions expressed in this blog may have been disseminated before to others. This blog should not be taken as investment, legal or tax advice. The investments referred to herein may not be suitable for you. Investments particularly in the field of RNAi Therapeutics and biotechnology carry a high risk of total loss. You, the reader must make your own investment decisions in consultation with your professional advisors in light of your specific circumstances. I reserve the right to buy, sell, or short any security including those that may or may not be discussed on my blog.